On complementary automorphic forms and supplementary Fourier series
نویسندگان
چکیده
منابع مشابه
Dirichlet series from automorphic forms
This integral trick assumes greater significance when the function f is known to have strong decay properties both at 0 and at ∞, since then the Mellin transform is entire in s. One way to ensure such rapid decay is via eigenfunction properties in the context of automorphic forms. [2] • The archetype Mellin transform: zeta from theta • Abstracting to holomorphic modular forms • Variation: wavef...
متن کاملOn the Fourier Coefficients of Automorphic Forms on Gl2
Given E/F a quadratic extension of number fields and a cuspidal representation π of GL2(AE), we give a full description of the fibers of the Asai transfer of π. We then determine the extent to which the Hecke eigenvalues of all the Hecke operators indexed by integral ideals in F determine the representation π.
متن کاملMultiple Dirichlet Series and Automorphic Forms
This article gives an introduction to the multiple Dirichlet series arising from sums of twisted automorphic L-functions. We begin by explaining how such series arise from Rankin-Selberg constructions. Then more recent work, using Hartogs’ continuation principle as extended by Bochner in place of such constructions, is described. Applications to the nonvanishing of Lfunctions and to other probl...
متن کاملFOURIER COEFFICIENTS OF GLpNq AUTOMORPHIC FORMS IN ARITHMETIC PROGRESSIONS
Abstract. We show that the multiple divisor functions of integers in invertible residue classes modulo a prime number, as well as the Fourier coefficients of GLpNq Maass cusp forms for all N > 2, satisfy a central limit theorem in a suitable range, generalizing the case N “ 2 treated by É. Fouvry, S. Ganguly, E. Kowalski and P. Michel in [4]. Such universal Gaussian behaviour relies on a deep e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Illinois Journal of Mathematics
سال: 1962
ISSN: 0019-2082
DOI: 10.1215/ijm/1255631809